Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of parameter of proportion in Binomial Distribution Using Adjusted Prior Distribution

Historically, various methods were suggested for the estimation of Bernoulli and Binomial distributions parameter. One of the suggested methods is the Bayesian method, which is based on employing prior distribution. Their sound selection on parameter space play a crucial role in reducing posterior Bayesian estimator error. At times, large scale of the parametric changes on parameter space bring...

متن کامل

Bayesian Tobit quantile regression using g-prior distribution with ridge parameter

A Bayesian approach is proposed for coefficient estimation in Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems...

متن کامل

Estimation of the intercept parameter for linear regression model with uncertain non-sample prior information

This paper considers alternative estimators of the intercept parameter of the linear regression model with normal error when uncertain non-sample prior information about the value of the slope parameter is available. The maximum likelihood, restricted, preliminary test and shrinkage estimators are considered. Based on their quadratic biases and mean square errors the relative performances of th...

متن کامل

Nonparametric Bayesian Estimation of a Bivariate Copula Using the Jeffreys Prior SIMON GUILLOTTE and FRANÇOIS PERRON

ABSTRACT. A bivariate distribution with continuous margins can be uniquely decomposed via a copula and its marginal distributions. We consider the problem of estimating the copula function and adopt a nonparametric Bayesian approach. On the space of copula functions, we construct a finite dimensional approximation subspace which is parameterized by a doubly stochastic matrix. A major problem he...

متن کامل

Adaptive Sparseness Using Jeffreys Prior

In this paper we introduce a new sparseness inducing prior which does not involve any (hyper)parameters that need to be adjusted or estimated. Although other applications are possible, we focus here on supervised learning problems: regression and classification. Experiments with several publicly available benchmark data sets show that the proposed approach yields state-of-the-art performance. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2018

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1022/1/012002